
QUANTUM LOGIC 

and 

THE SEMANTICS OF NATURAL LANGUAGES* 

* or "THE WARP HYPOTHESIS" 

David McGoveran 
Dept. of Physics 
University of Chicago 
Winter, 1976 



CORHIGENDA 

P~i;i:e 1: Next to last line should read; "On the other hand, while 

the second •••••••• anomalies, classical lo~ic clearly can 

not be •••••• 11 

Last line. footnote deleted; I do not mean to imply that 

Godel's theorem is a mistake. Bather, while it may be a 

limitation we are forced to accept, inappropriate truth 

valuations are intolerable. 

Page 2: Fifth line from the bottom, footnote deleted at "········ 

concepts of reality*"; 1.e. conceptualization schemas. 

Pa~e 23: Line five; quotes should follow "that• and not precede it. 

Page 25; Second line from the bottom, footnote deleted at 11 ••• two 

differl!!""lt levels*. 11 ; Bill Miller of Dlablo Valley College 

suitgested the f ollowinp,: example -

11 He walked over to the billiard table and swallowed the cue

ball. 11 

- in which the me.aning {overt) is changed by the addition 

of a single word, thus -

tEfe walked over to the billiard table and swallowed the cue

ball agaln. 11 

Page 26: Last line; " ••• at different levels can occur." 

Footnote 19 deleted: see Finkelstein, STC II. 
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IIo A First Model: Causal Quantum Logic 

As a first approximation to the logical substructure, we seek 

a model which serves to describe as much of the empirical data as 

is currently possible. Specificly. we want to make use of that logic 

which serves to provide the foundation for much of physlcs·1n the 

hope that such a logic will be representative of the logic under

lying the other natural sciences and., at the same tilJ.e, will be 

exemplary of the more rigorous and (most important) more detailed 

of logical models based on empirical data. This logic 1s co11J1.only 

known as quantum logic and. was f 1rst explored in depth by von 

Neumann and Birkhoff (1936) in an attempt to provide both alter

natives to the model for the algebra of attributes proposed by 

' Boole and a coherent logical framework: for the seemingly ad hoc 

mathematics of quantum mechanics. 

In recent years, Finkelstein (1969,1972) has refined quantum. 

logic in an attempt to define the presumed geometry of space-time 

in such a way as to eliminate the contradictions between general 

relativity and quantum mechanics. satisfy the d1le111.Dla posed by 
JO 

Riemann in the 1800 1 s, and thereby unify physics. Although a later 

paper by Finkelstein (1974) posits a relativistic quantum lo!ic, 

it will not be necessary to invoke this model for the purposes of 

" the current paper& Nor will we consider quantUII logics generally, 

but rather we will restrict the model of interest to that which 

presupposes a causal ordering relation. The topology of a space 

must be based on ordered intervals with some ordering relation. 

Since we can arbitrarily restrict the discussion to those linguis

tic utterances which admit of a causal logic (not necessarily a 
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tion wer e utt~rred by a judge at a floral show, one migh t well ex-

peet tl'Hl' domain to be different tha.""t that which would be intended 

by , say 3 a stuffy and severely acadeintc l exicographer who was de
.ZI 

fini ng the term !or the pilot of a UFO~ 

While we may not be able t o do away wi th amb.iguit.ies , the 

very least on.e can demand of a systematic analysis of natural 

l anguages ( which just so happe.n to be of a_i, ambiguous natur<e) is 

define thi s term. 

The t erm I?ropert;l will be ttsed to refer to a."l. abstr act as-

present a definiti on :from other, perhaps m©Jr~ .fami liar concepts . 

R~schet' ( 1971} has defin~d the pr~cess of temporal real i:e..a-

tion Rt(.\) t>:# he -tha t in wnich the propos ition A is said to be 

realized at tim~ t . A similar process of spatial realizati on. may 

as .. A is realized at the position 

Jc. .•· Qeniu'alizing this notion t~) a spaeetime set or .subspa<e£ as ir~ 

the quantum logi~ of ?'inke'lst~iri., we may ·Wlt'i te R.~ (A} tc i>·e- r-ead 

a s "A i.s ;r~all$~d in the subspa©~ .!". Reschtu· · also demons tra tes 

tr~at t he pr~t::::ess of reali ·z.a'tiiO>ni (let us say the 0 r eali 'Z.a tir.m ope

ra.tor .. ) .alr.mg w.i th the orde~i-ng ~perator U su ffice to form a. weak-

; I 



ly c~mpl.et.e ax.l~matic basis. We now defin.e the elements of· t he 

subspace !! to be ordered. .aecordi.ng to some ordertng relation U. 

Fin.al ly ~ l~t iis generalize th~ s o-called real ization oper.atq,r . We 

s a)f t hat A is realiz~d in the domain2~ with ordering rel:atlon U i f. 

f o'!' s.:Jme subspace ot" c unstra'trrts A" (for instance. a set of percepts 

or a reali 't<J construe t), A• · is minimal .wi th respect t o A, A i s 

inc luded i n t he s ubspace A• . and A i s de!i.ned only over t he or d.et·i:;d 

sumed t o be ,of a universal natur e. We: reject sueh a notion e a tegc

.r-ica.lly . Dl fferent s peakers of the same l anguage have different. 

langu ages$ l ndeed . th er·~ i .s no r eason to ass m1H:)) that the same . 
speaker ,~1~ a gl ven language at two d i. f.feren t ITW>il'i~.nts C;f time e.a.'1 

some orde.ri.ng rel ation U . We have been avoi ding .a .formal de f'ini-
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IV. Quantum Linguistic Logic: 

Examples 

We have attempted in the previous section to provide a def 1-

n1t1on of the objects of logic - propositions - that will conform 

to the ready application of the rules of quantum logic and will, 

in fact, be consistent with such a logic as applied to linguistic 

utterances. In attempting to apply quantum logic to meaningful 

linguistic utterances, there is still a point that perhaps needs 

clarificat1ono Specifically I refer to Grice's rules of cooperation 

in ooll!Aunicationc We shall adopt Gr1ce's rules as being both neces

sary and sufficient asswaptions with which to properly interpret 

propositions. That is, instead of taking Grice•s rules as being 

constraints on the speaker, we take thea as being conditions of 

state in all meaningful utterances. Given Grice's rules. one can 

reasonably interpret any proposit j_on in such a way as to ·1dent1fy 

the subspace of constraints and the releTant domain. 

While this section will sometimes find.' the resolving of 

anomalies as produced by the application of ala§sical logic to lin

guistic utterances a natural consequence of demonstrating the use 

of quantWI logic, this is not the primary goal. We are well aware 

of the fact that 111any problems in the system will only be solved 

by further investigations, and indeed we will remain unaware of 

many of them until the bulk of classical logic laws have been rein

vestigated without the use of distributive laws, distributive laws 

being the major mod1r1cat1on which quantum logic proposes. We seek 

then. only to provide the reader with some relevant examples of the 

p9wer of quantum logic in dealing with natural languages. 
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~xcent in the \ wo-valued cas e . Thus the truth values of p and q de 

not, necessarily <le t.er.mine the t .ruth v alue of p ::>q. This fa.cl: alone 

i s sufficient, t o account for the difficulties encoun tered in ••fuzzy•~ 

logic .. Based on this evidence we rej e c,:t Lakoff · s ( 197 2) conclr.~sion 

·•that a mul ti-11alued. logic is essential for an .adequate treatment 

of the semant.ics of a large amount of natural language vocabulary . 

part icularly adjectives su~ h a.s fat, ob.noxious . and ,2.l~asa:rrt . Not 

only is it not essential bu t .: + 
}. '• i:s not 

force multi =~1alued logh'!s. may i n fact tH~ analyzed it\ qui t e a: d.i f-

feren t f ashion . 

fol l rowing the definition of a propos i. tion set .forth in the 

previ ous S·ecti on . we claim that only the twc .... valu~d case has m~.en~ 

tn-tt.h dependen t u pon t he degree to which J .L .• Seagull is a ha,.Em: 

tive haP:oV if t hf'.l: stateme.r~t is in. fae t to be a .Proposition ., Other • -· ' "" 

or obnoxio~s will be sufficient to insure that the s t atement is 

pr oposi.tiona.lly .tneompl.ete~ !ntuitiv~ly we know that while :al.l 
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posi.tir.:>r:a.lly complete ~r propositionally incom!)lete with the .add.i .. 

ti on or d·eletion o:f' s ome meaningful unit: such as n • t .. 

Quite often a lingui s tic utterance is compos ed of more than 

one syn tagma and these may overlap each other as wel l as be linear -

ly decomposable. Witn t he addition of each new quantum unit ·-of 

me-aning (constraint) , eacn of several releva..orit subspaces is "trig-

gered .. so to speak. A stibspace i s delet~d when a digit is r~qu..i ·red 

fur t her <>r (in some cases) ©.a.use it tc o~ di?letedc Tnus a string 

level " .)',, .. 2 r a I .. .,. 
,/' .. 4 I 

Al ~~2 A) A4 A.5 A6. A7 Ag A9 

t ... --· ,.., -~--. ----...----
.---------.--..., - ---------

'1 ,---~, .. -- --. r:= 

le~t.,ei t 
tt ·~· 

""' ' ' ' ti' ?. 
..} 

r---··---~--··"-, ----------
.., tt;,\ r 
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Ve Conclusions 

We are forced ·conclude that the standard notion of truth 

'ifaluat.ions is primarily at fault when diffici..~lties arise with 

5.cati.1oirJus of loglc to linguistic data .. The classical defird ti. on 

valuations of ob,jects which shou 

does not explicitly show wnere the failure occurs. The approach 

pres ~. has produced a more 

c has predicted that 
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TABLE I 

Simple Systems 

For quantwn systems, the algebra of a system is irreducible 

being the algebra of all maps of an underlying innerproduct space 

l(S). In this part all concepts are relative to one implicit system 

s. 
Class (of a systems)~= projection (quantity equal to its 

* (adjoint) and square) in sA; subspace P ,Q, ••• of the under

lying linear space of sA. 

F C Q, Fis included in Q (of classes P, Q) : = the basic eigen

value equation FQ=F; the subspace inclusion PCQ. 

I and ~, universal and null class: =quantities 1 and O; 1(3) 

and the O vector, as subspaces of l(S). 

FUQ, P or Q (adjunction): = sup(P,Q); spanP UQ (the set join 

of two subspaces never being requiredJ. 

F n Q' I- and. Q (conjunction) : = inf (PI Q) ; subspace meet }' n Q .. 

Q is a complement of P: =FU Q = I,P Q=~;Q is a complememtary 

subspace to P. 

-P, the negation of P: =1-P; ortpogonal complement of subspace F. 

P.J. Q, F excludes Q: =PQ=O; F and Q aee orthogonal subspaces. 

P comQ, F is compatible or conw.utes with Q: a basis exists for 

I(S) adapted to both subspaces P and Q. 

f(S), a coordinate f of S: =map f:s-ai--C; spectral family dPr(z) 

of subspaces, z a complex variable. Anr coordinate f may be 

represented by a coordinate quantity f=_J;, dPf(z), where the 

projection-valued measure dPr(z) is defined by trealgebra map 

r A: cA + sA. 



pc 1 Q. p 1s just included ln Q: P«XCQ if and only if P=X or 

X=Q; Q=PU one additional 1-space • . 
I Pl , the measure of P:= the length m of a chain oc:1P1C:..1•••C1Pm 

=P • 

o, a singlet;= projection o with measure= 1; a ray or 1-space 

of 1 {S) • 

If G is any group ot maps g:S~S and GA is the group of induced 

algebra maps, we can then define as follows: 

S/G, "S over G: =the algebra sA\G A., the collection of those 

quantities of SA invariant under GA; the algebra of operators 

on I(S) commuting with all members of the (unitary) group G. 

Even if S 1s a quantum system, S/G generally is not. 

s G, s under G: = the algebra SA/GA resulting from sA by iden

tification with respect to GA; the subspace of l(S)consisting 

of all fixed points under G. 

Let F be a class of S: 

s\f. S undep P, the restriction of s to P: =the algebra FSAP 

taken with the +, X, * of SA but with the new unit F; the sub

system defined by a subspace PCI(S) 

The system 1: = the system whose algebra is C; system with a 

one-dimensional Hilbert space. The system 1 is both a classical 

system (commutative) and a quantum system (irreducible). 

In quantum logic the distributive law 1s weakened to the form 

If aC::: c, then at){b1)c}=(a\J b)(\ c. Note that 1t is self-dual-.:. 

replacing C:: ,ft. U by :>.U .fl merely replaces a, b,c by 

c. b.a& It also t,ollows that (al) b)f\ c=(a Vb)n (a(} c). 

For quantum. assemblies, it is not generally true that 

a:::>b = -au b. 



Compound Systems 

S+T, the~ of Sand T: =the direct-product algebra SATA, 

1n which the two algebras SA and TA commute; the direct pro

duct Hilbert space !(S)XJ.(T). Sim1larly for IIS 1 • Associative 

and distributive laws hold. 

S RT, a binary relati£n fi between systems S,T: =a class of 

S T; subspace of the direct product I(S)Xl(T}. 

S- T , similar systems S ,T: = two systems S,T provided with an 

equiva].ence map e :S ~ T {map with inverse); two Hilbert spaces 

with a unitary e:I(S) ~.!(T ) . We designate corresponding pro

jections in S ,T by P(S)-P(T}. Replicas of a system S are 

similar systems obtained from S by attaching labels,e.g. s 1-s 2 
S ='r: = for similar systems S-T, the class U~(S)!(T ) , the union 

extending over all singl ets !(S} -!;(T ) ; sylllJletric subspace of 

the direct product. 

Reflexive relation: =relation SET with (S=T) C.(S ~ T); 

subspace of l(S )Xl(T) including the symmetric subspace. 

aT. the transpose of R: =eXe-1 (R) where e:S-4T is the equiva

lence ~ap of S-T and E=S R T. 

Sy11I1etric relation: =relation S=ST. 

TransitiTe relation: =relation '.£. with s 1 !, S2,S2 T S3C: s 1 ! s
3 

Functional relation: =relation SET= U~fA(~).where ~ranges 

over the singlets of S , and f :S..,.. T ls a map; the graph 

UB. (SXf.A (!;)) of an algebra map "f' A:~+ SA . 

seq2s . the 2-seQ_Uence of' S' s: =th e product s
1
s 2 of two replicas 

s1-s2 of S ; the ordered pair of two s•s. 

d1a 2s , the diagonal 2-sequence of s •s : = seq2s\(S1=s 2). the 

restriction of s 1s 2 
to the class (S 1=s2 ); the subspace of 

symmetric tensors in l(S1 )Xl(s
2

) 



Let G be the syram.etric group on two sirllllar systems. s
1
-s

2
• 

ser2s, the 2-ser1es of S's: =seq2S/G with Gas above; the 

subalgebra of sAxsA invariant under transposing; the direct 

sum of the subalgebras of the syrametric and antisywaetric 

subspace of I(S)XI(S). - -

Complex Systems 

seq S, then-sequence of S's:= IImSm (m=l, ••• ,n),where n 

Sm-S are similar systems; the direct product of n replicas 

of l(S). 

seqS, the seguence of S's:= seq S {n=O,l, ••• );the Maxwelln n 
Boltzman Fock space over I(S), with the number operator N as 

superselection rule. 

d1anS' the diagonal n-seguence of S's: =seqnS (S 1= ••••• =Sn); 

the space of syDIJJletric tensors of degree n over I(S). 

diaS, the diagonal seg_uence of S's:= ndianS (n=0,1, •••• ); 

the Bose-Einstein Fock space o-ver I(S), with the nm1ber of 

systems N as superselection. 

Let G be the symmetric group on the systems in a sequence seqS. 

Then we define as follows: 

sers, the series of s•s: =seqS/G; the subalbegra of seqSA 

invariant under G. 
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